Parkway Pantai and UCARE.AI unveils AI-powered predictive hospital bill estimation system | Healthcare Asia Magazine
, Singapore

Parkway Pantai and UCARE.AI unveils AI-powered predictive hospital bill estimation system

It provides an 82% accuracy rate in estimating hospital bills.

Private healthcare provider Parkway Pantai and artificial intelligence (AI) healthcare startup UCARE.AI launched its AI-powered predictive hospital bill estimation system at the Mount Elizabeth, Mount Elizabeth Novena, Gleneagles and Parkway East hospitals, an announcement revealed.

The system will dynamically generate personalised and more accurate bill estimates based on relevant parameters such as a patient’s medical condition and medical practices, as well as taking into account their age, revisit frequency and existing co-morbidities including high blood pressure and diabetes.

According to the firms, the system analyses and uses the relevant information specific to the individual patient to automatically predict the patient’s bill size at different touchpoints, starting from pre-admission until eventual recovery. Using an advanced suite of AI and machine learning algorithms, the system provides an average 82% accuracy rate in estimating bills.

“Our investment in this new AI-powered system gives patients more accurate hospital bill estimates and empowers them to make more well-informed decisions on the medical treatment options available,” Phua Tien Beng, Parkway Pantai CEO for the Singapore operations division, said in a statement. “More importantly, it allows patients to have greater peace of mind over their healthcare expenditure so that they can focus on getting well.”

Also read: Singapore's Ministry of Health sets fee benchmarks for surgical procedures

The new estimation system has been in use since November and has made more than 10,000 predictions so far, the firms revealed in a joint statement.

“In its first two weeks of going live, the AI system has already closed the average gap between the estimated and actual bills by 60%,” they highlighted. “The accuracy of its predictions is expected to improve over time as the AI collects and references more data through a process of self-learning.”

Conventional billing estimation methods are based on statistical calculation of previous hospital bill sizes up to two years ago and are unable to account for dynamically changing factors such as disease aggravation and unexpected complications such as longer length of stay or unplanned additional surgeries.

“We seek to ride the wave of healthcare disruption and roll out more AI systems and services to benefit patients globally,” UCARE.AI founder and CTO Neal Liu added in a statement.

EMC Healthcare dan InterSystems akan meluncurkan sistem rekam medis elektronik canggih di Indonesia

Sistem ini dilengkapi dengan dokumentasi otomatis dan kode berbasis AI.

Rumah sakit swasta di Filipina diminta berhati-hati akan pengeluaran

Klaim layanan kesehatan di negara ini diperkirakan meningkat 21% tahun ini.

KTPH melacak pasien dan peralatan secara real-time

Rumah sakit milik negara Singapura ini juga berencana menggunakan gelang RFID pasif untuk melacak lokasi pasien.

Sistem otomatis mengangkut instrumen bedah di Singapura

Sistem ini mengirimkan instrumen siap pakai langsung ke meja operasi.

Island Hospital menggunakan rehabilitasi berbasis data untuk mempercepat pemulihan

Teknologi ini menyesuaikan latihan pasien dan memberikan feedback secara real-time.

Rumah Sakit didesak menutup kesenjangan dalam layanan kesehatan perempuan

Investasi yang lebih baik dalam kesehatan perempuan dapat meningkatkan perekonomian global sebesar USD 1 triliun per tahun pada 2040.

NUHCS melatih lebih banyak ahli bedah untuk implantasi katup jantung yang kurang invasif

TAVI menargetkan kondisi yang sering dimulai dengan murmur jantung.